Bild: Hochschule Fulda | Nicole Dietzel
Ein Prototyp des Second-Life-Batteriespeichers ist im März im osthessischen Fulda ans Netz gegangen. Das Projekt wurde durch die HessenAgentur aus Mitteln des Förderprogramms Elektromobilität in Hessen gefördert. Die Lösung verlängert den Lebenszyklus von Lithium-Ionen-Batterien aus der Elektromobilität und bindet diese in ein zweites Anwendungsszenario ein. In der Regel haben die ausgedienten E-Fahrzeug-Batterien noch eine Restkapazität von etwa 85 Prozent oder mehr.
Die Batterien sind in einen Container verbaut und damit flexibel an verschiedenen Netzknotenpunkten einsetzbar. Als eine Art Puffer speichern sie Energie, wenn besonders viel davon im Stromnetz verfügbar ist und geben sie wieder ab, wenn erforderlich. So wird schnelles Laden von E-Fahrzeugen möglich, ohne dass das Energienetz am Anschlusspunkt überlastet wird.
Netzintegration durch intelligente Leistungsteuerung
Mit seinem Team hat Projektleiter Professor Ulf Schwalbe von der Hochschule Fulda ein speziell auf das Second-Life-System ausgelegtes Energiemanagementsystem zur intelligenten und effizienten Betriebsführung des Batteriespeichers entwickelt. Steuerungs- und Regelungsalgorithmen sorgen dafür, dass der Speicher nachlädt oder wieder in das Netz entlädt, wenn es zur Stromnetzentlastung erforderlich ist. Das System lässt sich auch als Zwischenspeicher für eine Photovoltaikanlage konfigurieren. Weiterhin ist der flexible Einsatz als Unterbrechungsfreie Stromversorgung möglich. Der Speicher kann damit auch klassische Notstromaggregate teilweise ersetzen.
„Wir sind in den Anwendungsmöglichkeiten sehr flexibel. Das System passt sich durch seine intelligenten Algorithmen automatisch auf den Anwendungsfall an und verfügt über Selbstdiagnosealgorithmen zur Überwachung der Batterien. Es sind nur sehr wenige Parameter bei Inbetriebnahme einzustellen“, erläutert Schwalbe.
Der Prototyp stellt zwei Ladepunkte mit Gleichstrom und zwei mit Wechselstrom für das Fahrzeugladen bereit und hat eine nutzbare Kapazität von 180 kWh sowie eine Ladeleistung von bis zu 150 kW für moderne Elektrofahrzeuge. Der Container ist gegen Diebstahl und Vandalismus gesichert und bietet laut den Entwickler eine hohe Anschlagssicherheit aufgrund intelligenter Selbstdiagnose und eines robusten Aufbaus.
Skalierbare Lösung für verschiedene Anwendungsszenarien
Das System verspricht eine Skalierbarkeit auf bis zu 1 MWh Kapazität und bis zu 400 kW Ladeleistung pro Ladepunkt. Das Forschungsteam will nun die Erfahrungen mit dem Prototyp nutzen, um einen dezentral und universell einsetzbaren, ortsflexiblen, modularen Batteriespeicher mit einer Kapazität von etwa1 MWh zu entwickeln – ebenfalls aus gebrauchten Lithium-Ionen-Batterien aus der Elektromobilität. Damit ließe sich zum Beispiel auch der Einfluss von Ladeparks an Autobahnen auf das elektrische Netz reduzieren.
Darüber hinaus arbeitet das Fuldaer Forschungsteam daran, die verschiedenen Anwendungsszenarien wie Netzflexibilisierung, Spannungsglättung, Einspeise-Pufferung aus erneuerbaren Energieanlagen, Leistungsbereitstellung für Hochleistungsverbraucher oder Bereitstellung von Regelleistung bestmöglich miteinander zu kombinieren.
Eingesetzt werden kann die Lösung schon jetzt an Autobahnraststätten und Tankstellen ohne ausreichenden Netzanschluss. Aber sie ist den Entwicklern zufolge auch für kleine, mittlere und große Firmen interessant, ebenso für Einkaufszentren, Vermarkter von Großveranstaltungen und Betreiber von Solar- und Windkraftanlagen – auch Kleinbetriebe -, die überschüssig Strom produzieren und diesen als Ladestrom nutzen wollen.